# Schneider Electric/Legacy Electric Power Relays <br> 9A 

SPST-NO, 30 A;
SPDT, 30 A (NO) / 15 A(NC)

| c | The 9A series power relays offer robust performance in applications such as HVAC, motor controls, and alarm systems. |  |
| :---: | :---: | :---: |
|  | Feature | Benefit |
|  | Standard Class F insulation | Allows for maximum coil temperature of $155^{\circ} \mathrm{C}\left(311^{\circ} \mathrm{F}\right)$ which is ideal for high temperature applications |
|  | FLA/LRA and hp ratings | Capable of handling motor loads |
|  | Ballast load ratings | Suitable for lighting control applications |
|  | Small package size | Ideal for small spaces |
| W9AS1D52 | Standard Quick Connect terminals | Simplifies and expedites installation |


| Rated Contact Current | Contact Configuration | Coil Voltage | Coil Resistance ( $\mathbf{\Omega}$ ) | Standard Part Number |
| :---: | :---: | :---: | :---: | :---: |
| 30 A | SPST-NO | 24 Vac | 500 | 9AS1A52-24 |
|  |  | 120 Vac | 3000 | 9AS1A52-120 |
|  |  | 5 Vdc | 25 | 9AS1D52-5 |
|  |  | 12 Vdc | 144 | 9AS1D52-12 |
|  |  | 24 Vdc | 576 | 9AS1D52-24 |
| $30 \mathrm{~A}(\mathrm{NO}) ; 15 \mathrm{~A}(\mathrm{NC})$ | SPDT | 24 Vac | 500 | 9AS5A52-24 |
|  |  | 120 Vac | 3000 | 9AS5A52-120 |
|  |  | 240 Vac | 12100 | 9AS5A52-240 |
|  |  | 5 Vdc | 25 | 9AS5D52-5 |
|  |  | 12 Vdc | 144 | 9AS5D52-12 |
|  |  | 24 Vdc | 576 | 9AS5D52-24 |

Note: PC mount versions available, please call (847) 441-2540 for more information.

## Part Number Explanation

Series:
9A

# Schneider Electric/Legacy Electric Power Relays <br> 9A <br> SPST-NO, 30 A; <br> SPDT, 30 A (NO) / 15 A (NC) 

Specifications (UL 508)

| Part Number | 9AS1 | 9AS5 |
| :---: | :---: | :---: |
| Contact Characteristics |  |  |
| Contact Configuration | SPST-NO | SPDT |
| Contact Material | Silver Alloy |  |
| Thermal (Carrying) Current | 30 A | $\begin{aligned} & 30 \text { A (NO); } \\ & 15 \text { A (NC) } \end{aligned}$ |
| Maximum Switching Voltage | 300 V |  |
| Current Ratings at Voltage | Resistive: <br> 30 A at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$; <br> 30 A at $28 \mathrm{Vdc}, 100,000$ cycles <br> Motor: <br> 1 hp at $125 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$; <br> 2 hp at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 1,000$ cycles <br> FLA/LRA: <br> 22/98 A (NO) at $120 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 30,000$ cycles; <br> $30 / 80 \mathrm{~A}(\mathrm{NO})$ at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 30,000$ cycles <br> Ballast: <br> 10 A at $277 \mathrm{Vac}, 6,000$ cycles <br> Pilot Duty: <br> 470 VA, 6,000 cycles | Resistive: <br> 30 A at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ (NO); <br> 15 A at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ (NC); <br> 30 A at $28 \mathrm{Vdc}(\mathrm{NO})$; <br> 10 A at 28 Vdc (NC), 100,000 cycles <br> Motor: <br> 1 hp at $125 \mathrm{Vac} 50 / 60 \mathrm{~Hz}(\mathrm{NO})$; <br> $1 / 4 \mathrm{hp}$ at $125 \mathrm{Vac} 50 / 60 \mathrm{~Hz}(\mathrm{NC})$; <br> 2 hp at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}(\mathrm{NO})$; <br> $1 / 2 \mathrm{hp}$ at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$ (NC), 1,000 cycles <br> FLA/LRA: <br> $22 / 98 \mathrm{~A}(\mathrm{NO})$ at $120 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 30,000$ cycles; <br> $30 / 80 \mathrm{~A}(\mathrm{NO})$ at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 30,000$ cycles; <br> $12 / 30 \mathrm{~A}(\mathrm{NC})$ at $240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}, 30,000$ cycles <br> Ballast: <br> 10 A at $277 \mathrm{Vac}(\mathrm{NO})$; <br> 3 A at 277 Vac (NC), 6,000 cycles <br> Pilot Duty: <br> 470 VA (NO), 275 VA (NC), 6,000 cycles |
| Minimum Switching Requirement | 100 mA at $12 \mathrm{Vac}, 5 \mathrm{Vdc}$ |  |
| Coil Characteristics |  |  |
| Coil Voltage Range ${ }^{1}$ | $\begin{aligned} & 24-240 \mathrm{Vac} 50 / 60 \mathrm{~Hz} \\ & 5-24 \mathrm{Vdc}^{1} \end{aligned}$ |  |
| Operating Range (\% of Nominal) | $\begin{aligned} & \text { 80\%-120\% (AC); } \\ & 75 \%-120 \% ~(D C) \end{aligned}$ |  |
| Average Consumption | $\begin{aligned} & 2.8 \text { VA (AC); } \\ & 1 \text { W (DC) } \end{aligned}$ |  |
| Drop-out Voltage Threshold | 10\% (AC/DC) |  |
| General Characteristics |  |  |
| Electrical Life at Rated Load | 100,000 cycles, unless otherwise specified under "Current Ratings at Voltage" |  |
| Mechanical Life at No Load (Unpowered) | 10,000,000 operations |  |
| Operate Time at Nominal Coil Voltage | 15 ms |  |
| Dielectric Strength | Between coil and contact: 2500 Vac; Between contacts: 1500 Vac |  |
| Operating Temperature Range | $-40-+55^{\circ} \mathrm{C}\left(-40-+131^{\circ} \mathrm{F}\right)$ |  |
| Storage Temperature Range | $-40-+85{ }^{\circ} \mathrm{C}\left(-40-+185{ }^{\circ} \mathrm{F}\right)$ |  |
| Vibration Resistance | $3 \mathrm{~g}-\mathrm{n}, 10-55 \mathrm{~Hz}$ |  |
| Shock Resistance | $10 \mathrm{~g}-\mathrm{n}$ |  |
| Weight (Average) | 33 g (1.16 oz) |  |
| Product Certifications | UL (E43641) |  |

Note: Actual product performance may vary depending on application and environmental conditions.
${ }^{1}$ For available standard coil voltages, please refer to the standard part number table on page 26.

Dimensions,
Wiring Diagrams

## Schneider Electric/Legacy Electric Power Relays <br> 9A <br> SPST-NO, 30 A; <br> SPDT, 30 A (NO) / 15A (NC)

Dimensions - inches (millimeters)


## Wiring Diagrams

All diagrams are shown from top view


SPST-NO


SPDT

# Schneider Electric/Legacy Electric Power Relays <br> 9A <br> DIN Rail Adapter, 16-9ADIN-1 



## Description

The 16-9ADIN-1 DIN rail adapter provides the mounting flexibility needed to mount the 9A Power Relay in a panel board or control box.


| Description | Function | For Use With Relays | Packaging <br> Minimum | Standard Part <br> Number |
| :--- | :--- | :--- | :--- | :--- | :--- |
| DIN Rail Adapter | Enables the 9A relay to be mounted directly to a DIN rail | 9A series relays | 10 | $16-9 A D I N-1$ |

Dimensions - inches (millimeters)


